Search results for "Catalytic cracking"
showing 10 items of 18 documents
Can Macroscopic Parameters, Such as Conversion and Selectivity, Distinguish between Different Cracking Mechanisms on Acid Catalysts?
1997
n-heptane cracking has been carried out for very short time periods on an established reaction mechanism which includes the following group of stream reactions on different zeolites: Initiation reactions (protolytic cracking), charge isomerization, chain isomerization, hydride transfer, β-scission–alkylation, desorption–adsorption, and hydrogen transfer–cyclization. It has been observed that a given experimental distribution of products can be explained by more than just one reaction scheme. This does not allow one to clearly distinguish the fraction of reactant which disappears via monomolecular initiation reactions with respect to bimolecular hydride transfer reactions.
Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications
2018
Controlling the location of acid sites in zeolites can have a great effect on catalysis. In this work we face the objective of directing the location of Al into the 10R channels of ZSM-5 by taking advantage of the structural preference of B to occupy certain positions at the channel intersections, as suggested by theoretical calculations. The synthesis of B-Al-ZSM-5 zeolites with variable Si/Al and Si/B ratios, followed by B removal in a postsynthesis treatment, produces ZSM-5 samples enriched in Al occupying positions at 10R channels. The location of the acid sites is determined on the basis of the product distribution of 1-hexene cracking as a test reaction. The higher selectivity to prop…
Catalytic cracking of alkanes on MCM-22 zeolite. Comparison with ZSM-5 and beta zeolite and its possibility as an FCC cracking additive
1995
Abstract N-heptane cracking has been carried out on MCM-22, and its kinetic and decay behaviour is compared with that of ZSM-5 and Beta zeolites. In the case of MCM-22 cracking occurs in the 10-member ring channel system, as well as in the large cavities formed by 12-member rings. Product selectivities show that MCM-22, while presenting features which indicate structural similarities with ZSM-5, it also presents characteristics corresponding to pores or cavities larger than ZSM-5. The selectivities to the individual products together with C1 + C2/iC4, C3/C4, C5/C2, iC4/total C4, and alkane/alkene ratios indicate that MCM-22 has good properties to be used as an FCC octane booster additive sp…
Formation of products responsible for motor and research octane of gasolines produced by cracking The implication of framework Si/Al ratio and operat…
1989
Abstract An alkane in the range of gasoline fraction ( n -heptane) has been used as a reactant to study the influence of zeolite Y catalyst and process variables (i.e., framework Si Al ratio and procedure of dealumination, time on stream, and contact time) on the formation of products responsible for motor and research octane of gasoline during cracking, namely branched, aromatics, and olefins. It is found that the branched isomers in the C 5 and C 6 fractions appear as primary products and are partly produced by disproportionation, since the ratio of iso to normal compounds is above equilibrium. The ratio of branched to linear products strongly decreases when the number of carbon atoms of …
Catalytic cracking of n-alkane naphtha: The impact of olefin addition and active sites differentiation
2015
An extended dual kinetic model allows to fit the n-heptane cracking results working in a wide range of reaction conditions. The duality of the model is provided by the contribution of monomolecular and bimolecular cracking mechanisms. It takes into account the role played by the olefins formed on the global cracking or added within the feed. Furthermore by means of this model and the kinetic parameters obtained when cracking n-heptane on ZSM-5, it has been observed that, while some characterization techniques show a homogeneous zeolite surface from the point of view of the active sites, rigorous kinetic experiments point to the possibility that the reactant sees a heterogeneous surface with…
A kinetic study of the cracking, isomerization, and disproportionation of n-heptane on a chromium-exchanged Y zeolite
1982
The kinetic rate constants for the cracking, isomerization, and disproportionation of n-heptane over a CrHNaY (32% chromium exchanged) zeolite catalyst at 400, 450, and 470 °C have been calculated. The interaction of n-heptane with a model Lewis acid such as BF3 and progress along the reaction coordinate have been studied by means of molecular orbital calculations. From the kinetic results, i.e., activation energies and frequency factors, and the theoretical calculations, it can be concluded that the controlling step in these reactions is not the formation of the carbonium ion, but the subsequent transformation of this carbonium ion. In addition, the theoretical calculations show that the a…
Current views on the mechanism of catalytic cracking
2000
Abstract The cracking mechanisms of hydrocarbons have been reviewed and the kinetic and thermodynamic implications of the different steps, i.e. initiation, chain propagation, and termination, have been discussed. Although the cracking mechanism of olefins and alkylaromatics is well established, the initiation step for the cracking of paraffins is still under debate. The role of Bronsted-type active sites and also the possible influence of extra-framework Al species in the case of zeolite catalysts, especially when commercial feeds and industrial conditions are employed, are presented. The product distribution is determined by the number of propagation events occurring per initiation step, a…
Cracking behavior of zeolites with connected 12- and 10-member ring channels: The influence of pore structure on product distribution
1997
n-Heptane has been cracked on a CIT-1 zeolite which has connected 12- and 10-member ring (MR) channels, and its behavior was compared with that of MCM-22 with nonconnected 12- and 10-MR channels, and SSZ-24 and BETA with unidirectional and tridirectional 12-MR channels, respectively. The kinetic rate constant is highest for CIT-1, and the decay constant is lowest. From the selectivity point of view, its behavior can be better represented by a system with large cavities (the intersections between the 12- and 10-MR) connected by windows. This gives a behavior typical of that of large pore zeolites. CIT-1 produces a remarkably high selectivity toi-C4, and specially to isobutane. This zeolite s…
Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene: Micro and macroscopic implications of the presence of st…
2012
One option to produce more ethene and propene can be to crack naphtha type fractions in dedicated smaller FCC units. We present here the results obtained for high temperature steam catalytic cracking (SCC) of a representative naphtha product (n-heptane) with ZSM-5. It has been found that under those conditions the presence of steam produces an irreversible dealumination of the zeolite as well as a reversible deactivation due to the interaction of water with active sites with a negative effect on protolytic cracking. A kinetic decay model that takes into account the two phenomena has been developed. The apparent activation energy is lower in the presence of steam. It appears that whilst the …
The role of pore topology on the behaviour of FCC zeolite additives
1999
Abstract A large variety of zeolite topologies including: large pore tridirectional (Beta), large pore unidirectional (Mordenite, SSZ-24), bidirectional 10 member ring pores (MRP) (ZSM-5), bidirectional 10 × 8 MRP (Ferrierite), tridirectional with connected 12 and 10 MRP (CIT-1), bidirectional with 12 MRP connected by 10 MRP (NU-87), tridirectional with 10 × 11 × 12 MRP (NU-86), and finally 10 MRP, and independent 12 MR cavities connected by 10 MR windows (MCM-22), have been studied as catalysts for the cracking of a gasoline range model molecule ( n -heptane). Kinetic and decay constants as well as selectivity parameters such as paraffin/olefin, i -C 4 / n -C 4 , i -C 5 / n -C 5 , C 3 /C 4…